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1 Applications of Hadamard Factorization and Properties of
the Γ-Function

1.1 Minimum modulus theorem and range of entire functions of finite
order

Last time, we proved the Hadamard factorization for entire functions of finite order:

f(z) = eg(z)zp
∞∏
k−1

Em(z/ak),

where (ak) are the zeros of f such that 0 < |a1| ≤ |a2| ≤ · · · , p is the order of the zeros
at 0, m ≤ ρ < m+ 1, and g is a polynomial of degree ≤ ρ. We have for all s ∈ (ρ,m+ 1)
there exists some C > 0 such that∣∣∣∏Em(z/ak)

∣∣∣ ≥ e−C|z|s , z ∈ C \
⋃
D(ak, 1/|ak|m+1).

Our analysis of this gives us the following facts:

Corollary 1.1 (minimum modulus theorem). For every ε > 0, there exists an R > 0 such
that

|f(z)| ≥ e−|z|ρ+ε , |z| ≥ R, z ∈ C \
⋃
D(ak, 1/|ak|m+1).

Corollary 1.2. Let f be entire of finite order ρ /∈ N. Then f assumes every complex value
infinitely many times.

Proof. For any w ∈ C, f, f−w are entire of the same order, so it suffices to show that f has
infinitely many zeros. If f has only finitely many zeros, then the Hadamard factorization
gives f(z) = p(z)eg(z), where p, g are polynomials. The order of such a function is the
degree of g, which is an integer.
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1.2 Factorization of sine

Example 1.1. Let f(z) = sin(πz). This is entire of order 1, and f−1({0}) = Z. Write
Z \ {0} as {ak : k = 1, 2, . . . } with a2j = −j for j ≥ 1 and a2j+1 = j+ 1, for j ≥ 0. We can
write

sin(πz) = eg(z)z
∞∏
k=1

E1(z/ak)

= eg(z)z
∞∏
k=1

(1− z/ak)ez/ak

= eg(z)z
∞∏
j=1

(1 + z/j)e−z/j
∞∏
j=0

(1− z/(j + 1))ez/(j+1)

= eg(z)z

∞∏
j=1

(1 + z2/j2)

eg is even, and g is a polynomial of degree ≤ 1. So g(z) = g(= z) + 2πki for some k ∈ Z.
If g(z) = αz + β, then α = 0.

= eβz
∞∏
j=1

(1 + z2/j2).

To find β, differentiate and take z = 0 to get π = eβ. This gives us the classical factorization
formula:

sin(πz) = πz

∞∏
j=1

(1− z2/j2).

1.3 The Γ-function

Definition 1.1. The Γ-function is defined by

Γ(a) =

∫ ∞
0

ta−1e−t dt, Re(a) > 0.

The integral converges locally uniformly in Re(a) > 0 and defines a holomorphic func-
tion in this region. We have

Γ(a+ 1) = lim
ε→0+
R→∞

∫ R

ε
e−tta dt = lim

ε→0+
R→∞

(
−tae−t

∣∣R
ε

+

∫ R

ε
ata−1e−t dt

)
= aΓ(a),

when Re(a) > 0. In particular, since Γ(1) = 1, we have

Γ(n) = (n− 1)!, n ≥ 1.
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Proposition 1.1. The Γ-function has a meromorphic continuation to C with simple poles
at the nonpositive integers {0,−1,−2, . . . }. The residue at −N is (−1)N/N !.

Proof. For N ∈ N with N > 0, write

Γ(a+N + 1) = (a+N)Γ(a+N)

= (a+N)(a+N − 1)Γ(a+N − 1)

= · · ·
= (a+N) · · · (a+ 1)aΓ(a).

So we can write

Γ(a) =
Γ(a+N + 1)

(a+N) · · · (a+ 1)a
.

The right hand side is meromorphic in Re(a) > −N −1. Thus, Γ extends meromorphically
to all of C with the poles {0,−1,−2, . . . }. Compute

Res(Γ,−N) = lim
a→−N

(a+N)Γ(a) =
(−1)N

N !

Remark 1.1. We have Γ(a+ 1) = aΓ(a) for a ∈ C \ {0,−1,−2, . . . }.

We want to apply Hadamard factorization to Γ, but it is not entire. However, 1/Γ is
entire. We will use the following property of the Γ function:

Proposition 1.2 (reflection identity). For a ∈ C \ Z,

Γ(a)Γ(1− a) =
π

sin(πa)

Proof. It suffices to show the identity when 0 < Re(a) < 1. Write

Γ(1− a) =

∫ ∞
0

e−xx−a dx
x=ty
= = t

∫ ∞
0

e−ty(ty)−a dy.

so we may write

Γ(a)Γ(1− a) =

∫ ∞
0

e−tta−1t

(∫ ∞
0

e−ty(ty)−a dy

)
dt =

∫∫
t≥0,y≥0

e−t(1+y)y−a dy dt

=

∫ ∞
0

y−a

1 + y
dy

=
π

sin(πa)
.

To show the last equality apply the residue theorem to

f(z) =
zb−a

1 + z
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with 0 < b < 1 and 0 < arg(z) < 2π, using a “keyhole contour.” We get∫
γ
f(z), dz → (1− e2πi(b−1))

∫∞
0
xb−1

1 + x
dx,

where the left hand side equals 2πi(−1)b−1.

Next time, we will show that 1/Γ is entire of order 1.
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