Math 246B Lecture 19 Notes

Daniel Raban

March 1, 2019

1 Applications of Hadamard Factorization and Properties of the Γ -Function

1.1 Minimum modulus theorem and range of entire functions of finite order

Last time, we proved the Hadamard factorization for entire functions of finite order:

$$f(z) = e^{g(z)} z^p \prod_{k=1}^{\infty} E_m(z/a_k),$$

where (a_k) are the zeros of f such that $0 < |a_1| \le |a_2| \le \cdots$, p is the order of the zeros at 0, $m \le \rho < m + 1$, and g is a polynomial of degree $\le \rho$. We have for all $s \in (\rho, m + 1)$ there exists some C > 0 such that

$$\left|\prod E_m(z/a_k)\right| \ge e^{-C|z|^s}, \qquad z \in \mathbb{C} \setminus \bigcup D(a_k, 1/|a_k|^{m+1}).$$

Our analysis of this gives us the following facts:

Corollary 1.1 (minimum modulus theorem). For every $\varepsilon > 0$, there exists an R > 0 such that

$$|f(z)| \ge e^{-|z|^{\rho+\varepsilon}}, \qquad |z| \ge R, \quad z \in \mathbb{C} \setminus \bigcup D(a_k, 1/|a_k|^{m+1})$$

Corollary 1.2. Let f be entire of finite order $\rho \notin \mathbb{N}$. Then f assumes every complex value infinitely many times.

Proof. For any $w \in \mathbb{C}$, f, f - w are entire of the same order, so it suffices to show that f has infinitely many zeros. If f has only finitely many zeros, then the Hadamard factorization gives $f(z) = p(z)e^{g(z)}$, where p, g are polynomials. The order of such a function is the degree of g, which is an integer.

1.2 Factorization of sine

Example 1.1. Let $f(z) = \sin(\pi z)$. This is entire of order 1, and $f^{-1}(\{0\}) = \mathbb{Z}$. Write $\mathbb{Z} \setminus \{0\}$ as $\{a_k : k = 1, 2, ...\}$ with $a_{2j} = -j$ for $j \ge 1$ and $a_{2j+1} = j+1$, for $j \ge 0$. We can write

$$\sin(\pi z) = e^{g(z)} z \prod_{k=1}^{\infty} E_1(z/a_k)$$

= $e^{g(z)} z \prod_{k=1}^{\infty} (1 - z/a_k) e^{z/a_k}$
= $e^{g(z)} z \prod_{j=1}^{\infty} (1 + z/j) e^{-z/j} \prod_{j=0}^{\infty} (1 - z/(j+1)) e^{z/(j+1)}$
= $e^{g(z)} z \prod_{j=1}^{\infty} (1 + z^2/j^2)$

 e^g is even, and g is a polynomial of degree ≤ 1 . So $g(z) = g(=z) + 2\pi ki$ for some $k \in \mathbb{Z}$. If $g(z) = \alpha z + \beta$, then $\alpha = 0$.

$$=e^{\beta}z\prod_{j=1}^{\infty}(1+z^2/j^2).$$

To find β , differentiate and take z = 0 to get $\pi = e^{\beta}$. This gives us the classical factorization formula:

$$\sin(\pi z) = \pi z \prod_{j=1}^{\infty} (1 - z^2/j^2).$$

1.3 The Γ -function

Definition 1.1. The Γ -function is defined by

$$\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt, \qquad \operatorname{Re}(a) > 0$$

The integral converges locally uniformly in $\operatorname{Re}(a) > 0$ and defines a holomorphic function in this region. We have

$$\Gamma(a+1) = \lim_{\substack{\varepsilon \to 0^+ \\ R \to \infty}} \int_{\varepsilon}^{R} e^{-t} t^a \, dt = \lim_{\substack{\varepsilon \to 0^+ \\ R \to \infty}} \left(-t^a e^{-t} \Big|_{\varepsilon}^{R} + \int_{\varepsilon}^{R} a t^{a-1} e^{-t} \, dt \right) = a \Gamma(a),$$

when $\operatorname{Re}(a) > 0$. In particular, since $\Gamma(1) = 1$, we have

$$\Gamma(n) = (n-1)!, \qquad n \ge 1.$$

Proposition 1.1. The Γ -function has a meromorphic continuation to \mathbb{C} with simple poles at the nonpositive integers $\{0, -1, -2, ...\}$. The residue at -N is $(-1)^N/N!$.

Proof. For $N \in \mathbb{N}$ with N > 0, write

$$\Gamma(a+N+1) = (a+N)\Gamma(a+N)$$

= $(a+N)(a+N-1)\Gamma(a+N-1)$
= \cdots
= $(a+N)\cdots(a+1)a\Gamma(a).$

So we can write

$$\Gamma(a) = \frac{\Gamma(a+N+1)}{(a+N)\cdots(a+1)a}$$

The right hand side is meromorphic in $\operatorname{Re}(a) > -N-1$. Thus, Γ extends meromorphically to all of \mathbb{C} with the poles $\{0, -1, -2, \ldots\}$. Compute

$$\operatorname{Res}(\Gamma, -N) = \lim_{a \to -N} (a+N)\Gamma(a) = \frac{(-1)^N}{N!}$$

Remark 1.1. We have $\Gamma(a+1) = a\Gamma(a)$ for $a \in \mathbb{C} \setminus \{0, -1, -2, \dots\}$.

We want to apply Hadamard factorization to Γ , but it is not entire. However, $1/\Gamma$ is entire. We will use the following property of the Γ function:

Proposition 1.2 (reflection identity). For $a \in \mathbb{C} \setminus \mathbb{Z}$,

$$\Gamma(a)\Gamma(1-a) = \frac{\pi}{\sin(\pi a)}$$

Proof. It suffices to show the identity when $0 < \operatorname{Re}(a) < 1$. Write

$$\Gamma(1-a) = \int_0^\infty e^{-x} x^{-a} \, dx \stackrel{x=ty}{=} t \int_0^\infty e^{-ty} (ty)^{-a} \, dy.$$

so we may write

$$\begin{split} \Gamma(a)\Gamma(1-a) &= \int_0^\infty e^{-t} t^{a-1} t \left(\int_0^\infty e^{-ty} (ty)^{-a} \, dy \right) \, dt \quad = \iint_{t \ge 0, y \ge 0} e^{-t(1+y)} y^{-a} \, dy \, dt \\ &= \int_0^\infty \frac{y^{-a}}{1+y} \, dy \\ &= \frac{\pi}{\sin(\pi a)}. \end{split}$$

To show the last equality apply the residue theorem to

$$f(z) = \frac{z^{b-a}}{1+z}$$

with 0 < b < 1 and $0 < \arg(z) < 2\pi$, using a "keyhole contour." We get

$$\int_{\gamma} f(z), \ dz \to (1 - e^{2\pi i(b-1))} \int_0^\infty \frac{x^{b-1}}{1+x} \, dx,$$

where the left hand side equals $2\pi i(-1)^{b-1}$.

Next time, we will show that $1/\Gamma$ is entire of order 1.