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1 Applications of Hadamard Factorization and Properties of
the I'-Function

1.1 Minimum modulus theorem and range of entire functions of finite
order

Last time, we proved the Hadamard factorization for entire functions of finite order:

f(2) = 8D [T E(z/ar),

k—1

where (ay) are the zeros of f such that 0 < |a1| < |ag| < -+, p is the order of the zeros
at 0, m < p<m+1, and g is a polynomial of degree < p. We have for all s € (p,m + 1)
there exists some C' > 0 such that

‘HEm(Z/ak)) >e CFN e\ | Dlak, 1/|ar™).
Our analysis of this gives us the following facts:

Corollary 1.1 (minimum modulus theorem). For every e > 0, there exists an R > 0 such
that
@)z e e 2 Rz e CAU D@, 1/ ax™ ),

Corollary 1.2. Let f be entire of finite order p ¢ N. Then f assumes every complex value
infinitely many times.

Proof. For any w € C, f, f —w are entire of the same order, so it suffices to show that f has
infinitely many zeros. If f has only finitely many zeros, then the Hadamard factorization
gives f(z) = p(z)e?®), where p, g are polynomials. The order of such a function is the
degree of g, which is an integer. O



1.2 Factorization of sine

Example 1.1. Let f(z) = sin(rz). This is entire of order 1, and f~1({0}) = Z. Write
Z\{0} as {ay : k=1,2,...} with ag; = —j for j > 1 and agj11 = j+ 1, for j > 0. We can
write

sin(rz) = e9%) 2 H Ei(z/ax)
k=1

— 9(2)

(1 — z/ay)e*/ ™

8

k=1
= O [T+ 2/i)e 7 [T — 2/ + 1)U+
j=1 §=0

= /D [J+22/2)

.
Il
-

ed is even, and g is a polynomial of degree < 1. So g(z) = g(= 2) + 27ki for some k € Z.
If g(z) = az + B, then a = 0.

oo
=Pz H(l + 2%/52).
j=1

To find 3, differentiate and take z = 0 to get m = €. This gives us the classical factorization

formula:
oo

sin(mz) = 7z H(l —22/5%).
j=1
1.3 The I'-function
Definition 1.1. The I'-function is defined by

I'(a) = / t"te7tdt,  Re(a) > 0.
0

The integral converges locally uniformly in Re(a) > 0 and defines a holomorphic func-
tion in this region. We have

R R
Ia+1)= lim e 't*dt = lim (—t“e_t‘R +/ at® te~! dt) = al'(a),
e—0t £ e—=0t € £
R—o0 R—oo

when Re(a) > 0. In particular, since I'(1) = 1, we have

I'(n) =(n—-1), n > 1.



Proposition 1.1. The I'-function has a meromorphic continuation to C with simple poles
at the nonpositive integers {0,—1,—2,...}. The residue at —N is (—1)V/NV.

Proof. For N € N with N > 0, write
I'Na+N+1)=(a+ N)I'(a+ N)
=(a+N)la+N—-1)T(a+ N —-1)

=(a+N)---(a+1)al'(a).

So we can write
I'(a) = I'(a+ N +1) '
(a+N)---(a+1)a
The right hand side is meromorphic in Re(a) > —N — 1. Thus, I" extends meromorphically
to all of C with the poles {0,—1,—2,...}. Compute

_1\NV

Remark 1.1. We have I'(a 4+ 1) = al'(a) for a € C\ {0,—-1,-2,...}.

We want to apply Hadamard factorization to I', but it is not entire. However, 1/T is
entire. We will use the following property of the I' function:
Proposition 1.2 (reflection identity). Fora € C\ Z,

T(a)T(1—a) = —

sin(ma)

Proof. Tt suffices to show the identity when 0 < Re(a) < 1. Write

F(l—a):/ e Cx"ads "= —t/ e W (ty) " dy.
0 0

—tgaly </ e W (ty) dy> dt = // e 04 y=a gy dt
0 t>0,y>0

SO we may write

[(a)I'(1 —a)

vK
T

sm(mL)

To show the last equality apply the residue theorem to




with 0 < b <1 and 0 < arg(z) < 27, using a “keyhole contour.” We get

A b1
/ F(2), dz — (1— 2D 2
oy 142

where the left hand side equals 27i(—1)°~1.

Next time, we will show that 1/T" is entire of order 1.
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